# Assignment

#### Write

Match each definition with its corresponding term.

| 1. Diameter–Chord Theorem                            | a. If two chords of the same circle or congruent<br>circles are congruent, then their corresponding<br>arcs are congruent.                                             |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Equidistant Chord Theorem                         | <ul> <li>b. If two chords of the same circle or congruent</li> <li>circles are congruent, then they are equidistant</li> <li>from the center of the circle.</li> </ul> |
| 3. Equidistant Chord Converse Theorem                | <ul> <li>c. If two arcs of the same circle or congruent</li> <li>Arc Theorem circles are congruent, then their</li> <li>corresponding chords are congruent.</li> </ul> |
| 4. Congruent Chord–Congruent Arc Theorem             | d. If two chords of the same circle or congruent circles are equidistant from the center of the circle, then the chords are congruent.                                 |
| 5. Congruent Chord–Congruent Arc<br>Converse Theorem | e. If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and bisects the arc determined by the chord.                             |

### Remember

The Diameter–Chord Theorem states: "If a circle's diameter is perpendicular to a chord, then the diameter bisects the chord and bisects the arc determined by the chord."

The Equidistant Chord Theorem states: "If two chords of the same circle or congruent circles are congruent, then they are equidistant from the center of the circle."

The Congruent Chord–Congruent Arc Theorem states: "If two chords of the same circle or congruent circles are congruent, then their corresponding arcs are congruent."

## Practice

- 1. Use circle *T* to complete parts (*a*) through (*g*).
  - a. Draw an inscribed right angle in circle *T*. Label each point where the angle intersects the circle. What is the name of the right angle?
  - b. Draw the chord determined by the inscribed right angle. What is the name of the chord?
  - c. Draw a second inscribed right angle in circle *T*. Label each point where the angle intersects the circle. What is the name of the second right angle?
  - d. Draw the chord determined by the second inscribed right angle. What is the name of the chord?
  - e. Describe the relationship between the arcs that correspond to the chords you named in parts (b) and (d). Explain your reasoning.
- The figure shows a section of a circle. Draw two chords and construct their perpendicular bisectors to locate the center of the circle. Explain your work.
- 3. In circle *G* shown below, MG = 1.84 centimeters, GL = 1.98 centimeters,  $m \angle GLH = 90^{\circ}$ , and  $m \angle GMK = 90^{\circ}$ . Determine which chord is longer,  $\overline{IH}$  or  $\overline{JK}$ . Explain your reasoning.



## Stretch

- The circle shown has a diameter of 40 centimeters. The length of *RC* is 12 centimeters, and the length of *UV* is 16 centimeters.
  - a. Determine the length of CU. Explain your reasoning.
  - b. Determine the length of QS. Explain your reasoning.





#### Review

- Paloma tells you she is thinking of a quadrilateral that is either a rectangle or a square, but not both. She wants you to guess which quadrilateral she is thinking of and allows you to ask one question about the quadrilateral. What question should you ask?
- 2. Consider the kite shown. The kite without the tail is a quadrilateral. Classify the quadrilateral based only on each piece of given information.
  - a. The diagonals of the quadrilateral are perpendicular to each other and bisect each other.
  - b. The four angles and the four sides of the quadrilateral are congruent.



3. Given:  $\[thesize] 3$  is supplementary to  $\[thesize] 6$ ,  $\[thesize] 1 \cong \[thesize] 12$ , and m $\[thesize] 12 = 52^\circ$ . Using the diagram in conjunction with postulates and theorems, determine the measures of the unknown angles.





4. If  $\angle 1 \cong \angle 5$ , which theorem leads to the

conclusion that  $Q \parallel S$ ?

5. The degree measure of each exterior angle of a regular decagon is represented by the expression 5x + 1. Solve for *x*.