Assignment

Write

Match each definition with its corresponding term.

- 1. polynomial
- 2. term
- 3. coefficient
- 4. monomial
- 5. binomial
- 6. trinomial
- 7. degree of a term
- 8. degree of a polynomial

- a. a polynomial with only 1 term
- b. the degree of the term with the greatest exponent
- c. a mathematical expression involving the sum of powers in one or more variables multiplied by coefficients
- d. a polynomial with exactly 3 terms
- e. any number being multiplied by a power within a polynomial expression
- f. each product in a polynomial expression
- g. a polynomial with exactly 2 terms
- h. the exponent of a term in a polynomial

Remember

- The difference of two squares is an expression in the form $a^2 b^2$ that has factors (a + b)(a b).
- A perfect square trinomial is an expression in the form $a^2 + 2ab + b^2$ or in the form $a^2 2ab + b^2$ that has the factors $(a + b)^2$ and $(a b)^2$, respectively.

Practice

- 1. Ramona and James each build a rocket launcher. They launch a model rocket using Ramona's launcher and on its way back down it lands on the roof of a building that is 320 feet tall. The height of the rocket can be represented by the equation $H_1(x) = -16x^2 + 200x$, where *x* represents the time in seconds and $H_1(x)$ represents the height. Ramona and James take the stairs to the roof of the building and re-launch the rocket using James's rocket launcher. The rocket lands back on the ground. The height of the rocket after this launch can be represented by the equation $H_2(x) = -16x^2 + 192x + 320$.
 - a. Compare and contrast the polynomial functions.
 - b. Use technology to sketch a graph of the functions.
 - c. Does it make sense in terms of the problem situation to graph the functions outside of Quadrant I? Explain your reasoning.
 - d. Explain why the graphs of these functions do not intersect.
 - e. Ramona believes that she can add the two functions to determine the total height of the rocket at any given time. Write a function S(x) that represents the sum of $H_1(x)$ and $H_2(x)$. Show your work.

- f. Is Ramona correct? Explain your reasoning.
- g. Subtract $H_1(x)$ from $H_2(x)$ and write a new function, D(x), that represents the difference. Then, explain what this function means in terms of the problem situation.
- 2. Determine whether each expression is a polynomial. If so, identify the terms, coefficients, and degree of the polynomial. If not, explain your reasoning.

a. $-2b^4 + 4b - 1$	b. 6 $-g^{-2}$
c. 8 <i>h</i> ⁴	d. $9w - w^3 + 5w^2$
e. $x^{\frac{1}{2}} + 2$	f. $\frac{4}{5}y + \frac{2}{3}y^2$

3. Given $A(x) = x^3 - 5x + 4$, $B(x) = 2x^2 + 5x - 6$, and $C(x) = -x^2 + 3$, determine each function. Write your answer in general form.

a. $D(x) = B(x) + C(x)$	b. $E(x) = A(x) + B(x)$
c. $F(x) = A(x) - C(x)$	d. $G(x) = C(x) - B(x)$
e. $H(x) = A(x) + B(x) - C(x)$	f. $J(x) = B(x) - A(x) + C(x)$

4. Determine each product.

a. (x - 7)(x - 7)	b. (x + 10)(x - 10)
c. $(x + 6)^2$	d. $(2x + 5)^2$
e. (2 <i>x</i> - 5)(2 <i>x</i> - 5)	f. (2 <i>x</i> - 5)(2 <i>x</i> + 5)

Stretch

Consider the binomials (x + 3), (2x + 1), and (x - 4).

- 1. Without multiplying, make a conjecture about the degree of the product of these binomials. Explain how you determined your answer.
- 2. Without multiplying, make a conjecture about the number of terms in the product of these binomials. Explain your reasoning.
- Two students determine the product of the 3 binomials using two different methods. Student 1
 uses a multiplication table, and Student 2 uses the distributive Property. Their work is shown below.
 Determine which student multiplied correctly and identify the mistake the other student made.
 Explain how you determined your answer.

Student 1

•	X	3	2 <i>x</i>	1
Х	<i>X</i> ²	3 <i>x</i>	2 <i>x</i> ²	Х
-4	-4x	-12	-8 <i>x</i>	-4

The product is $3x^2 - 8x - 16$.

Student 2

(x + 3)(2x + 1)(x - 4) = (2x² + 7x + 3)(x - 4)= 2x³ - x² - 25x - 12

The product is $2x^3 - x^2 - 25x - 12$.

Review

- 1. Alfonzo is building a deck on his house. He was originally going to make it a square with a side length of *x* feet. Alfonzo decides to make it a rectangular deck, with 1 foot added to one pair of opposite sides and 2 feet added to the other pair of opposite sides.
 - a. Determine the expressions for the length and width of the new deck in terms of *x*, the length of the sides of the original deck.
 - b. Write the function for the area of the new deck, *A*(*x*), in terms of *x*, the length of the sides of the original deck. Does this function have a minimum or maximum? Explain your answer.
- 2. Analyze each pair of representations. Then, answer each question and justify your reasoning.a. Which function's axis of symmetry has ab. Which function has a greater absolute minimum?
 - greater *x*-value?

Function A
$$f(x) = x^2 - 4x + 9$$

Function A
$$f(x) = 3(x - 2)^2 - 6$$

Function **B**

Function B

X	У
1	2
3	5
5	18

- 3. Write the equation of the function, g(x), whose graph transforms the graph $f(x) = x^2$ by reflecting it across the *x*-axis, vertically stretching it by a factor of 2, and translating it up 5 units.
- 4. Graph the function, g(x), whose graph transforms the graph $f(x) = x^2$ by vertically compressing it by a factor of $\frac{1}{3}$ and translating it down 7 units.